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Purpose of review

Multivariate pattern analysis (MVPA) is an emerging technique for analysing functional

imaging data that is capable of a much closer approximation of neuronal activity than

conventional methods. This review will outline the advantages, applications and

limitations of MVPA in understanding the neural correlates of consciousness.

Recent findings

MVPA has provided important insights into the processing of perceptual information by

revealing content-specific information at early stages of perceptual processing. It has

also shed light on the processing of memories and decisions. In combination with

techniques to reconstruct viewed images, MVPA can also be used to reveal the

contents of consciousness.

Summary

The development of multivariate pattern analysis techniques allows content-specific and

detailed information to be extracted from functional MRI data. This may lead to new

therapeutic applications but also raises important ethical considerations.
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Introduction
Consciousness is the rich, constantly changing internal

experience which makes us who we are. At its most basic

level, it is the degree of wakefulness, necessary for any

conscious experience [1]. But when we are awake (and

sometimes when we are asleep and dreaming) we can

have experiences with particular phenomenal content [2].

Phenomenal consciousness is the content of our percep-

tions, such as the experience of the colour red, and access

to those contents is achieved when we report those

contents to others, or reflect upon them. This latter

process may rely upon a fronto-parietal network [1],

requiring the phenomenal content to be broadcast to

areas of the brain responsible for reasoning and planning

[3]. Here we focus on the extent to which the phenom-

enological contents of consciousness can be decoded

from activity patterns in functionally specialized brain

regions.

Consciousness can be fundamentally changed by diseases

damaging the brain. As well as affecting level of con-

sciousness, disease can alter both phenomenal contents

and access to consciousness, both globally as in dementia,

psychosis and seizures, and focally as in spatial neglect,

the agnosias and functional disorders. Much of medical

practice involves eliciting the content of phenomenal

states (the contents of consciousness) through communi-

cation. Yet probing the contents of consciousness in this
opyright © Lippincott Williams & Wilkins. Unauth
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way is not always possible when communication or

insight is limited. Therefore techniques allowing direct

determination of mental content through measuring

brain activity may provide important insights into these

diseases, and in future may enable communication in

altered states of consciousness [4].

Neuroimaging, neurophysiological and behavioural stu-

dies provide insight into the location and processing of

conscious experiences. Functional MRI (fMRI) can also

demonstrate residual cognitive function in minimally

conscious patients [5–7] and in deeply anaesthetized

volunteers [8]. However, conventional fMRI can be

limited in its ability to represent the content of conscious

states. Multivariate pattern analysis (MVPA) is an emer-

ging technique for analysing neuroimaging data that

appears to permit reconstruction of a greater variety of

cognitive states from noninvasive measurements of brain

activity in humans. This makes it possible to use this new

technique to explore how the contents of conscious

experiences are encoded in the brain. The mechanisms

underlying access to consciousness have not yet been

studied using MVPA, but have been recently explored

using other methods [9–11].

Here we review the use of MVPA in the neuroimaging of

consciousness. First we outline important differences

between conventional neuroimaging and MVPA. We

then review recent applications of MVPA in studies of
orized reproduction of this article is prohibited.
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the neural correlates of consciousness, in the domains of

perception, thought and intention. Finally, we consider

limitations of MVPA and potential applications in under-

standing neurological and psychiatric disease.
What is multivariate pattern analysis?
Conventional fMRI measures the blood oxygen level-

dependent (BOLD) signal at each location (voxel) in a

brain image. The BOLD signal arising during different

cognitive tasks can then be compared to determine

whether a brain location is involved in a particular func-

tion [12]. In contrast, MVPA examines the pattern of

responses across many voxels simultaneously. This is

achieved by viewing the voxel activity pattern (rather

than overall level of activity) as points in multidimen-

sional space, with as many dimensions as there are voxels,

and defining a boundary separating the patterns belong-

ing to each condition. This technique affords MVPA

several potentially important advantages over conven-

tional fMRI analysis.

Conventional fMRI analysis typically considers activity

at a single point in space (voxel) or averaged across a set

of voxels (a ‘region-of-interest’ analysis). Both these

approaches lead to loss of information about the spatial

pattern of activity local to a voxel. In contrast, MVPA

retains this fine-grained spatial information lost during

conventional analysis; it is now apparent that these

patterns can encode information about mental states.

Pattern analysis can also detect changes in spatial pat-

terns of activity associated with different mental states

that occur without any overall change in activation.

Thus, MVPA provides potentially increased sensitivity

to content-specific information, providing a deeper

understanding of the neuronal activity underlying a

person’s cognitive state.
How is multivariate pattern analysis carried
out?
Multivariate pattern analysis requires a series of stages of

analysis [13�,14]:
(1) D
opy
ata splitting: The fMRI time series is divided into

‘training’ and ‘test’ data for use in steps 5 and 6 below.

This division is arbitrary and often based on scanner

runs, for example even runs for training, odd runs for

testing to ensure the two sets are independent from

each other.
(2) P
reprocessing: The data are preprocessed (as in con-

ventional fMRI analysis) by co-registering the images

into the same anatomical space and correcting for

participant movements.
(3) A
ctivity estimation: A time course of activity for

every voxel in each individual participant is gener-
right © Lippincott Williams & Wilkins. Unauthoriz
ated, either using the raw BOLD signal or by using

parameter estimates [12] that represent closeness to a

fit to an expected model (see [15] for alternative

methods).
(4) V
oxel selection: Some voxels are likely to be more

informative for MVPA than others. An initial step is

usually to decide which voxels to include in the

analysis. This selection must use criteria that are

orthogonal to the classification being tested in the

MVPA analysis. Typically there is restriction to a

region of interest obtained from independent anatom-

ical or functional data (see also [16,17]). More recently

‘searchlight’ approaches which sequentially examine

cliques of voxels throughout the cortex like a search-

light scanning over cortex have become popular.
(5) T
raining the classifier: A classifier is trained on the

training data. This typically involves determination

of a plane in multidimensional space that best sep-

arates the patterns arising from the multivariate voxel

time series associated with the different experimen-

tal conditions. There are a variety of ways of making

this determination (see [15] for a comparison

between different classifiers).
(6) T
esting the classifier: The classifier is then applied to

the independent test set. For each voxel pattern in

the test set, the classifier predicts which condition it

best belongs to, based on the separation between

patterns established in the training phase. Better than

chance performance at this blind classification (com-

pared to the known experimental condition labels)

suggests the BOLD response in that set of voxels

contains information sufficient to discriminate the

experimental condition.
Decoding perceptual experience
A fundamental aspect of consciousness is perception of

the external world. One serious limitation of conventional

fMRI analysis for the study of perception is its spatial

resolution of 1.5–3 mm3 voxels. Many aspects of neuronal

processing are organized at a finer spatial scale than this.

For example, the orientation of edges in the visual

environment is encoded in neuronal activity associated

with orientation columns in visual cortex that measure

only a few hundred micrometers across [18,19]. Conven-

tional fMRI analyses cannot detect information at this

spatial scale as multiple orientation columns fall within

each voxel. Nevertheless, two recent studies [20,21]

showed how MVPA could be used to recover this infor-

mation and determine which of two differently oriented

stimuli a participant was viewing. The authors realized

that slightly different proportions of cells with different

orientation properties are sampled by each voxel. This

produces small biases in the response of each voxel

to each orientation. Thus, when viewing images with

different orientations, each orientation evokes a slightly
ed reproduction of this article is prohibited.
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different response pattern. When the overall response

pattern is analysed, the orientation of lines being per-

ceived can be reliably determined (see also [22,23]).

Similar pattern-based analysis can decode the direction

of movement being viewed in regions of visual cortex not

previously thought to contain direction sensitive infor-

mation [24]. Importantly, this study could identify which

of two overlapping motion directions was the current

focus of the participant’s attention. Thus, correlates of

attention can be detected early in the visual processing

pathway. More recently several studies have used MVPA

to decode the experience of colour [25,26] and the

binding of colour and form [27] from early visual areas.

These studies thus enable fMRI to be used to study

signals associated with information about very early per-

ceptual processing, and their relationship to the contents

of consciousness.

Decoding object categories

One of the first uses of MVPA was to decode the category

of object (e.g. face, house or household object) that a

person was viewing from patterns of BOLD signals in

occipito-temporal cortex [28] (see also [29,30]). Since this

landmark study, further work has used MVPA to identify

increasingly detailed information associated with these

higher levels of visual processing. For example, Eger and

colleagues [31] could decode different types of chairs

presented to participants by examining patterns of

activity within lateral occipital complex (an object-sensi-

tive region in human occipito-temporal cortex). They

could achieve this even when using different viewing

angles for the training and test sessions, thus showing

object invariance of the fMRI signals to object orientation

at this later stage of perceptual processing. Several other

studies have decoded various forms of category infor-

mation not previously possible using conventional fMRI

analyses, such as the identity of individual faces [32,33],

distinguishing between numbers [34] and natural scenes

[35] and identifying pairs of objects using data collected

from viewing objects individually [36].

Intriguingly, category information can be extracted from

object-responsive voxels in ventral-temporal cortex even

without perception of the object itself [37�,38,39] (see

also [40]). Similarly, Haynes and Rees [41] decoded

changes in conscious experience during binocular rivalry.

They presented dissimilar images to each eye inducing

competition for perceptual dominance, generating fre-

quent changes in conscious experience despite the

stimulus remaining constant. By examining the pattern

of responses to each feature they tracked the dynamic

time course of subjective experience.

Decoding other sensory modalities

Although initial MVPA studies primarily explored visual

perception, recent work has used similar approaches in
opyright © Lippincott Williams & Wilkins. Unauth
other sensory modalities. For example, touches applied to

different fingers of the same hand can be distinguished by

examining patterns of activation in primary somatosen-

sory areas [42] and the speech content and identity of

speaker can be decoded from patterns of auditory cortical

activations [43]. Moreover, content-specific activity in

auditory cortices is associated with the subjective experi-

ence of sound in the absence of auditory stimulation

induced by muted films implying particular sounds [44].

Decoding natural images

Initially, MVPA was only used to decode simple figures

that had previously been viewed by the participant. A

greater challenge is to discriminate between patterns of

brain activity evoked by viewing natural images, which

are more complex than line drawings but more closely

reflect actual perceptual experience and to be able to

identify novel images not previously viewed by the

participant. Kay and colleagues [45] recorded fMRI data

while participants viewed hundreds of natural images.

They then generated a model for every voxel in visual

cortex, based on fundamental principles of receptive

fields, such as information on the orientation of edges

in the images. Next, they showed the participants new

images. They used the model estimated from the first set

of images to predict the pattern of activity each new

image would generate in visual cortex. This predicted

pattern could then be matched to the actual pattern of

brain signals. Using this technique, the authors could

reliably detect which novel image was being viewed by

the participant (see also [46]).

The approach has been taken a step further by recent

studies that reconstructed the image a person was view-

ing by decoding their brain signals. Miyawaki and col-

leagues [47] showed participants flickering checkerboard

patterns whilst recording fMRI signals; they used these

brain signals to reconstruct the patterns the participants

had seen. Naselaris and colleagues [48�] reconstructed

realistic images using pattern analysis combined with a

Bayesian approach which takes into account prior infor-

mation about the structure and content of natural scenes.

Nishimoto and colleagues [49] could identify continuous

natural movies from brain activity measurements and,

intriguingly, they could reconstruct this continuous visual

experience directly, by creating a reproduction of a film a

person was watching by monitoring their brain activity.

These results have potentially extraordinary future

implications for understanding first-hand the experiences

of patients in the vegetative state and for direct visual-

ization of hallucinations and dreams (see also [50]).

Decoding other influences on sensory processing

As MVPA is increasingly used to study the neural corre-

lates of consciousness, studies are emerging that begin to

challenge notions of how primary sensory cortices process
orized reproduction of this article is prohibited.
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information. Indeed, it is becoming apparent that primary

sensory cortex contains information beyond simple sen-

sory processing. For example, orientations of line gratings

held in working memory can be decoded from activity

patterns in human visual cortex, suggesting that early

visual areas are not restricted to sensory processing but

may also be involved in maintaining visual features in

memory [51�] (see also [52,53]). Similarly, vocal emotions

can be decoded from pattern analysis of voice-sensitive

regions, suggesting that emotional information is

represented by distinct spatial patterns in sensory cortex

[54] (see also [55]).
Decoding other mental states
The contents of consciousness are not only determined

by perception: internal memories and thoughts are a

significant constituent of mental life. Specific memory

traces can be detected in the hippocampus using MVPA

[56�]. Volunteers were shown films of everyday events

and then asked to vividly recall each of the episodes

during fMRI scanning. The specific memory being

recalled could be predicted by analysing the pattern of

activity in the hippocampus. MVPA can also provide

insight into the way memories are retrieved [57,58].

Using a slightly different computational model, Mitchell

et al. [59] examined patterns of activity throughout the

brain to determine the noun a participant was thinking

about, even for nouns not previously encountered by

their algorithm.

Decoding covert mental states

The studies discussed above involved cooperation on the

part of the individual, but thoughts and memories are

often private, and may on occasion be deliberately con-

cealed from others. Conventional neuroimaging studies

of deception have demonstrated that deceit involves

more effort than truth-telling and is associated with

activity in prefrontal cortices [60–62]. As MVPA has

higher sensitivity for classifying answers to specific ques-

tions in individuals, it has received interest as a potential

lie-detection technology. Davatzikos and co-workers [63]

used pattern analysis to accurately discriminate truthful

and deceitful responses regarding possession of a playing

card. Importantly, they could also classify patterns

from new participants not previously used for training

the algorithm, suggesting this form of lie detection

might have an application outside controlled laboratory

conditions.

An alternative approach to lie detection is examining

brain activity related to the concealed information rather

than the act of deception per se. Nose et al. [64], using

conventional fMRI analysis, found activation in prefron-

tal and parietal areas during processing of concealed

stimuli (similar to [60,65]). More recently, MVPA was
opyright © Lippincott Williams & Wilkins. Unautho
used to detect whether an individual has previously

encountered a particular piece of information [66�].

Participants were scanned while making recognition

judgements for studied and novel faces. Although MVPA

could reliably decode which face participants perceived

as old and which new, it could not reliably detect whether

a particular face was actually old or new. These results

suggest important limitations in the power of such

analyses to objectively detect an individual’s past experi-

ences.

These studies raise important ethical considerations [67–

70]. One concern is that if pattern analyses were allowed

as evidence in the judicial system, they might have

potential for harm if results were inaccurate or over-

interpreted. It remains unclear whether use of fMRI as

a legal tool is valid in more complex situations and when

an individual may have a strong incentive not to

cooperate [71]. Moreover, the possibility of reading

another person’s mind raises important issues of mental

privacy, particularly if done against a person’s will. Even

with a person’s consent, there is a risk of incorrectly

reading brain signals and arriving at inaccurate con-

clusions, highlighting the importance of ethical guide-

lines for acquisition and storage of these data.
Decoding intention
Deciphering the neural processes underlying intention is

a particular challenge in the study of consciousness.

Haynes and colleagues [72] addressed this question by

showing volunteers two numbers and allowing them free

choice of either addition or subtraction. Using MVPA,

they decoded whether volunteers were planning to add or

subtract from the pattern of signals in prefrontal cortex.

Hampton and O’Doherty [73] measured brain activity

while individuals performed a reward-based decision-

making task. Using MVPA, they decoded the subsequent

behavioural choice of participants from brain activity in

the previous trial and found that their decisions could be

discriminated even before they made their choice. Intri-

guingly, Soon et al. [74] found regions in the prefrontal

and parietal cortex that showed activity patterns predict-

ing the outcome of a decision up to 10 s before that

decision had been consciously made. These studies pose

an interesting challenge to the understanding of con-

sciousness and autonomy, suggesting that some of our

seemingly conscious decisions might be formed before

entering awareness.
Limitations
Although the use of MVPA to decode the content of what

a person is thinking can be impressive, it also suffers from

several limitations. MVPA studies typically classify the

brain activity patterns associated with a limited number
rized reproduction of this article is prohibited.
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of categories (see [45,59] for exceptions). Yet, in real life,

a person can have a potentially limitless number of

thoughts and people often have two or more thoughts

concurrently. It is not at all clear whether pattern analysis

can generalize over all such potential thoughts or whether

it could cope with multiple simultaneous thoughts.

Generalization across individuals is also problematic:

one person’s representation of a stimulus feature might

elicit a completely different voxel pattern to another

person’s representation. Furthermore, MVPA is a form

of pattern recognition. It requires an extensive training

dataset to learn to differentiate between mental states

and depends on the experimenter knowing the mental

state associated with each pattern. Thus mind reading

with no preliminary training period remains a

hypothetical scenario.

At present, most multivariate pattern analyses are per-

formed after data collection. In future, these methods

may converge with developments in near-real-time

analysis of fMRI data, raising the possibility of online

decoding a person’s thoughts in near-real-time and

potentially using biofeedback to change the environment

in association with these thoughts [75–77].

Another important limitation of fMRI MVPA is its rela-

tively poor temporal resolution. This is because blood-

flow changes lag several seconds behind electrical activity

of neurons. But MVPA approaches can also be used to

analyse magnetoencephalography (MEG) and EEG data-

sets that have millisecond temporal resolution but poor

spatial resolution. In future these methods might be used

in combination to provide the temporal and spatial resol-

ution required to access the rich and changing contents

of consciousness.

Finally, current neuroimaging technology suffers from

practical issues if it is to be used in real-world environ-

ments, particularly in the context of usable brain–

machine interfaces. MRI technology requires large, fixed

installations and positioning of participants in an enclosed

space. Future and emerging technologies may circum-

vent this problem, but at present transportable fMRI-

based devices able to decode another person’s thought

processes remain a future development.
Future clinical applications
Until now, MVPA has been used to probe the contents of

consciousness in the healthy brain. However, it may have

potential applications in neurological disease. In addition

to enabling communication with patients in minimally

conscious states, which is already being explored [4],

MVPA might be used to assess patients with limited

communication, such as expressive aphasia. It may also

have a role in directly probing the contents of hallucina-
opyright © Lippincott Williams & Wilkins. Unauth
tions or psychoses or in the assessment of patients with

functional disorders. Work is also emerging on the use of

biofeedback in the control of chronic pain [78] and the

increased sensitivity of MVPA may prove powerful in

similar applications.

Multivariate pattern analysis is increasingly being applied

to anatomical MRI data as a diagnostic tool to separate

patients with Alzheimer’s disease from healthy aging

individuals [79] and patients with autism spectrum dis-

order from healthy controls [80]. These techniques can

also identify individuals currently without symptoms who

are likely to develop Huntington disease later in life [81]

and predict which patients with mild cognitive impair-

ment are more likely to go on to develop Alzheimer’s

disease [82,83].
Conclusion
Multivariate pattern analysis provides a powerful frame-

work for examining the neural correlates of phenomenal

consciousness. It has revealed information at stages of

processing not previously thought to be present and

changed our understanding of the organization of per-

ceptual processing, as well as allowing reconstruction of

the contents of consciousness. It has potential clinical

applications in assessment of patients with expressive

aphasia and management of chronic pain. However, to

understand the neural correlates of consciousness

requires convergent use of MVPA alongside complemen-

tary methodologies that include conventional fMRI,

MEG, EEG and behavioural studies, and investigation

of patients with disorders of consciousness.
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